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In the framework of the ab-initio no-core shell model (NCSM), we describe the longitudinal-
longitudinal distribution function, part of the inclusive (e, e′) longitudinal response. In the two-body
cluster approximation, we compute the effective operators consistent with the unitary transformation
used to obtain the effective Hamiltonian. When short-range correlations are probed, the results
display independence from the model space size and length scale. Long-range correlations are more
difficult to model in the NCSM and they can be described only by increasing the model space or
increasing the cluster size. In order to illustrate the model space independence for short-range
observables, we present results for a large set of model spaces for 4He, and in 0− 4~Ω model spaces
for 12C.

PACS numbers: 21.60.Cs, 23.20.-g, 23.20.Js

Atomic nuclei are the result of a delicate interplay be-
tween short- and long-range correlations among the nu-
cleons, which makes their theoretical description rather
challenging. For light nuclei, very successful methods,
such as Green’s function Monte Carlo [1], hyperspheri-
cal harmonics [2], and the no-core shell model (NCSM)
[3–7], have been developed recently. They allow an ab-

initio description of nuclear properties, the only ingre-
dients being realistic nucleon-nucleon (NN) interactions,
which describe the experimental phaseshifts with high
accuracy, and theoretical three-nucleon forces.

In the ab initio NCSM, one starts with a realistic
NN interaction (theoretical three-body forces can also
be used, but we will not discuss this case here) and per-
forms a unitary transformation [8–10] to a model space,
which allows an exact diagonalization in a finite many-
body space, defined by the number of excitations above
a mean-field-like configuration. Details of the procedure
are available to the interested reader in previous publica-
tions [3–6]. Recently, we have extended the same proce-
dure from the Hamiltonian to general one- and two-body
operators [11–13]. The effect of the procedure is to re-
duce the dependence of the observables upon the model
space and harmonic oscillator (HO) frequency, and, in
the lowest approximation, it has proven to be effective
only for short-range operators [12].

Using the unitary transformation approach [8–10], we
obtain the following expression for the effective operators
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POP =
P + Pω†Q√

P + ω†ω
O

P + QωP√
P + ω†ω

, (1)

where the transformation operator ω satisfies the condi-
tion QωP = ω, with P and Q the projector operators in
the model and complementary spaces, respectively, and
O is the bare general operator, which acts in the entire
space.

In principle, the transformation operator ω can be
computed using a finite set of eigenvectors in the full
space, making use of the overlap of the full space eigen-
vectors with the basis states in the P and Q spaces [4, 5],
i.e.,

〈αQ|ω|αP 〉 =
∑
k∈K

〈αQ|k〉〈k̃|αP 〉. (2)

In the last equation, |αP 〉 and |αQ〉 are the basis states in
the P and Q spaces, respectively. The summation runs
over a finite subset, K, of eigenvectors in the full space,
and the tilde stands for the inverse of the overlap matrix,
i.e.,

∑
αP

〈k′|αP 〉〈αP |k̃〉 = δkk′ .

Equation (2) shows that in order to obtain the trans-
formation operator ω one needs the solution to the initial
A-body problem. This makes its application impractical,
unless we use approximations. In the simplest approxi-
mation, the transformation operator ω and, therefore,
the effective interaction are obtained in the relative sys-
tem of two particles, in a large HO basis. The Q space
is chosen to be a few hundred ~Ω excitations in order
to obtain an exact solution to the two-body Schrödinger
equation. Due to the rotational symmetry, we formu-
late the problem in two-nucleon channels with good total
spin s, total angular momentum j, and isospin t, reduc-
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ing drastically the dimensions involved, when perform-
ing the summation over the states in the Q space in Eq.
(1). The same procedure can be applied to operators
that can be analytically expressed in terms of relative
and center-of-mass coordinates of pairs. However, note
that in the case of non-scalar operators calculations per-
formed with Eq. (1) become more difficult, because such
operators can in general couple different channels. As ex-
pected, since the transformation operator is a scalar, this
procedure changes neither the character nor the rank of
the bare operator. By construction, keeping the cluster
approximation fixed (in this case, the two-body cluster)
and increasing the model space decreases the effect of the
renormalization. This was demonstrated in earlier papers
in the case of 3H for the ground-state energy [7], and in
this paper we will also demonstrate this by comparisons
between the effective and bare results for an observable
related to the Coulomb sum rule.

The inclusive (e, e′) longitudinal data presents one of
the clearest experimental signatures for short-range cor-
relations in the wave-function of the ground state, at least
for light nuclei. The Coulomb sum rule

SL(q) =
1

Z

∫ ∞

ωel

dωSL(q, ω) (3)

is the total integrated strength measured in electron scat-
tering. In Eq. (3), SL(q, ω) = R(q, ω)/|GE,p(q, ω)|2, with
R(q, ω) the longitudinal response function and GE,p(q, ω)
the proton electric form factor, while ωel is the energy
of the recoiling A-nucleon system with Z protons. The
Coulomb sum rule SL(q), which is related to the Fourier
transform of the proton-proton distribution function [15],
can be expressed as [16]

SL(q) =
1

Z
〈g.s.|ρ†L(q)ρL(q)|g.s.〉 − 1

Z
|〈g.s.|ρL(q)|g.s.〉|2

≡ 1 + ρLL(q) − ZFL(q)/GE,p(q, ωel),

where FL(q) is the longitudinal form factor. If one ne-
glects the relativistic corrections and two-body currents,
ρL(q) is simply the charge operator

ρL(q) =
1

2

A∑
i=1

exp(iq · ri)(1 + τz,i).

Consequently, the longitudinal-longitudinal distribution
function becomes [16]

ρLL(q) =
1

4Z

∑
i6=j

〈g.s.|j0(q|ri−rj |)(1+τz,i)(1+τz,j)|g.s.〉.

We present the results for ρLL(q) for 4He in Figs. 1
and 2. We have limited this investigation to two-body
interactions only, and, in particular, have used the phe-
nomenological CD-Bonn NN force [17], because it yields
reasonable convergence properties with increasing the
size of the model space. Although experimental data for
the longitudinal-longitudinal distribution function exist,
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FIG. 1: (Color online) The longitudinal-longitudinal distri-
bution function ρLL(q) in 4He for two model spaces (10~Ω
and 18~Ω) and fixed frequency ~Ω = 28 MeV, using bare
(dashed curves) and effective (continuous curves) operators.
As discussed in the text, the results obtained with effective
operators are almost indistinguishable.
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FIG. 2: (Color online) Longitudinal-longitudinal distribution
function, using bare (upper panel) and effective (lower panel)
operators. We used two different HO frequencies, 19 MeV
and 28 MeV, and two model spaces, 10~Ω and 18~Ω.

a direct comparison with experiment is not suitable, be-
cause we neglect: on one hand, (i) three-body forces in
the model Hamiltonian, and, on the other hand, (ii) ex-
change currents and (iii) relativistic corrections for the
charge operator. Nevertheless, the results demonstrate
the behavior of short- and long-range operators within
the framework of the NCSM.

Using a Gaussian operator of variable range, we have
shown previously how the renormalization of this two-
body operator depends upon its range [12]. We found
that a short-range two-body operator is renormalized ac-
curately at the two-body cluster level, while a long-range
operator is weakly renormalized. The same behavior can
also be inferred from Fig. 1, where we present ρLL(q)
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FIG. 3: (Color online) The convergence of the ground-state
energy for the two frequencies used to compute the ρLL(q).
The dotted line is the exact ground-state energy for the CD-
Bonn interaction (−26.16 MeV [18]).

calculated in two model spaces for a fixed frequency, us-
ing both bare and effective operators. Thus, at large
momentum transfer, the use of effective operators pro-
duces model-space independent results. Even in small
model spaces we obtain good results, although Fig. 3
shows that the ground-state wave function is not fully
converged in such small spaces, since the ground-state
enegy is not converged to the exact value. In particular,
for Nmax = 10 (or 10~Ω, in terms of allowed excitations
beyond the lowest configuration) the ground-state energy
is −28.30 MeV for ~Ω = 19 MeV and −27.56 MeV for
~Ω = 28 MeV, compared to the exact 4He CD-Bonn
ground-state energy of −26.16 MeV [18]. The complete
convergence of the ground-state energy can be obtained
within the NCSM, as demonstrated, e.g., in Fig. 1 of
Ref. [19]. As expected, Fig. 1 shows that in the large
model space the renormalization is weaker, i.e., there is
less need for renormalization, so that the value obtained
with the bare operator is similar to the value obtained
with the renormalized operator. Thus, for q . 3 fm−1

one cannot distinguish between the results obtained us-
ing bare operators in the 18~Ω model space for HO fre-
quency ~Ω = 28 MeV and the ones obtained using ef-
fective operators. For momenta q > 3 fm−1 the results
using the bare operator deviate from the renormalized
values, because the short-range correlations induced by
the interactions are cast into the effective interaction. If
one wants to account for short-range correlations using a
bare short-range operator, one has to increase the model
space, so that the effect of the short-range renormaliza-
tion is negligible. However, such a scheme would require
a vast number of ~Ω excitations to obtain a convergent
result.

In Fig. 2, we present ρLL(q) calculated in 10~Ω and
18~Ω model spaces, with HO frequencies of 19 and 28
MeV. In the upper panel we show the results obtained
using bare operators. In this case, the values are spread
over orders of magnitude. In contrast, the lower panel
demonstrate independence of both model space and fre-
quency, when using the appropriate effective operator,
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FIG. 4: (Color online) Longitudinal-longitudinal distribution
function for different model spaces and frequencies in 12C,
using bare (upper panel) and effective (lower panel) opera-
tors. For the 4~Ω model space, we show only the results
using ~Ω = 15 MeV. While the frequency dependence is not
completely removed, the use of effective operators produces
indistinguishable results at large q for different model spaces,
as discussed in the text.

although the ground-state energy is not converged, as il-
lustrated in Fig. 3. Moreover, Fig. 2 shows that the con-
vergence depends strongly upon the HO frequency, when
using bare operators. Thus, the results obtained with the
bare operator in 18~Ω with ~Ω = 19 MeV are far from
the results using effective operators; moreover, this curve
shows a second minimum around q ' 4.25 fm−1, whereas
the converged results are almost flat and several orders of
magnitude larger for this value of the momentum trans-
fer. In contrast, even if still significantly different from
the converged values, the results for ~Ω = 28 MeV are
closer to the ones obtained with effective operators.

One can better observe the influence of the frequency
and model space in Fig. 4, where we present the results
for 12C. For 12C, unlike the case of 4He, where we have
used a Jacobi-coordinate HO basis (see, e.g., Ref. [7]),
the investigation was performed using the Many-Fermion
Dynamics code [20], which employs a Slater determinant
basis and becomes much more efficient for A > 5 than a
Jacobi-coordinate approach. In this case, the number of
many-body configurations increases very rapidly and one
has to limit the truncation to a smaller model space. We
present results for up to 4~Ω model spaces. Again, note
in the upper panel that the results obtained with the bare
operators differ widely in shape and magnitude. When
using effective operators, however, all curves collapse into
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the same shape and agree with each other for q & 3 fm−1,
as shown in the lower panel. Because the calculation is
not fully converged, the minima still change significantly
with frequency and model space, even when one uses ef-
fective operators. One observes that, although the re-
sults at high momentum transfer are very close together,
a small dependence upon the HO frequency persists.

In summary, we have investigated the longitudinal-
longitudinal distribution function (part of the Coulomb
sum rule) in the framework of the NCSM, utilizing the
two-body cluster approximation. Thus, we have ex-
tended our previous application of the effective operator
formalism [11–13] to the calculation of an observable that
probes the short-range correlations. We find that even
very small model spaces can provide an accurate descrip-
tion of the short-range observables, if effective operators
are employed. This investigation shows that reliable re-
sults can be obtained for short-range operators, even for
heavier nuclei, such as 12C, for which the 0~Ω results

are accurate at higher q. As expected, intermediate- and
long-range correlations can be best described by increas-
ing the size of the model space and/or by a using higher
order cluster approximation.
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[11] P. Navrátil, M. Thoresen, and B. R. Barrett, Phys. Rev.
C 55, R573 (1997).

[12] I. Stetcu, B. R. Barrett, P. Navrátil, and J. P. Vary, Phys.
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